Exponential Asymptotics for Solitons in PT -Symmetric Periodic Potentials

نویسندگان

  • Sean D. Nixon
  • Jianke Yang
  • J. Yang
چکیده

Solitons in one-dimensional parity-time (PT )-symmetric periodic potentials are studied using exponential asymptotics. The new feature of this exponential asymptotics is that, unlike conservative periodic potentials, the inner and outer integral equations arising in this analysis are both coupled systems due to complex-valued solitons. Solving these coupled systems, we show that two soliton families bifurcate out from each Bloch-band edge for either self-focusing or self-defocusing nonlinearity. An asymptotic expression for the eigenvalues associated with the linear stability of these soliton families is also derived. This formula shows that one of these two soliton families near band edges is always unstable, while the other can be stable. In addition, infinite families of PT -symmetric multisoliton bound states are constructed by matching the exponentially small tails from two neighboring solitons. These analytical predictions are compared with numerics. Overall agreements are observed, and minor differences explained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Asymptotics for Line Solitons in TwoDimensional Periodic Potentials

As a first step toward a fully two-dimensional asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves, an analytical theory is presented for line solitons, whose envelope varies only along one direction, in general two-dimensional periodic potentials. For this two-dimensional problem, it is no longer viable to rely on a certain recurrence relation for going beyond...

متن کامل

Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC

PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...

متن کامل

Effect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC

In this paper we numerically investigate the effect of relative phase on thestability of temporal bright solitons in a Nano PT- Symmetric nonlinear directionalcoupler (NLDC) by considering gain in bar and loss in cross. We also study the effect ofrelative phase on the output perturbed bright solitons energies, in the range of   0 to 180 . By using perturbation theory three eigenfunctions an...

متن کامل

Symmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials.

Symmetry breaking of solitons in a class of one-dimensional parity-time (PT) symmetric complex potentials with cubic nonlinearity is reported. In generic PT-symmetric potentials, such symmetry breaking is forbidden. However, in a special class of PT-symmetric potentials V(x)=g(2)(x)+αg(x)+ig'(x), where g(x) is a real and even function and α a real constant, symmetry breaking of solitons can occ...

متن کامل

Topological States in Partially-PT-Symmetric Azimuthal Potentials.

We introduce partially-parity-time (pPT)-symmetric azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014